ASP.NET 2.0 and ASP.NET Ajax 1037

Please leave a message in our guestbook:

Your name: {Mike Brows

Your c-oonll address: ’mbfmm com

Fig. 25.37 | ASPX file for the guestbook application. (Part 3 of 4.)

1038 Internet & World Wide Web How to Program

Please leave a message in our guestbook:

Your nnme: ;

Tellthe woekt

5/1772005 SveBlack sblack @buglimgcom 1love the site! Keep up the good work!
S1R008 L Whke | Todsiebug o con | Very vt o o s
5:27:2005 Mike Brown mbrown@bugbug com Wonderful use of ASPNET!

Fig. 25.37 | ASPX file for the guestbook application. (Part 4 of 4.)

Notice that the SQL commands used by the Sq1DataSource contain several parame-
ters (prefixed with @). Lines 96-114 contain elements that define the name, the type and,
for some parameters, the source of the parameter. Parameters that are set programmatically
are defined by Parameter elements containing Name and Type properties. For example, line
107 defines the Date parameter of Type String. This corresponds to the @ate parameter
in the InsertCommand (line 91). Parameters that obrain their values from controls are
defined by ControlParameter elements. Lines 108-113 contain markup that sets up the
relationships between the INSERT parameters and the Web Form’s TextBoxes. We estab-
lished these relationships in the Command and Parameter Editor (Fig. 25.36). Each
ControlParameter contains a ControlID property indicating the control from which the
parameter gets its value. The PropertyName specifies the property that contains the actual
value to be used as the parameter value. The IDE sets the PropertyName based on the type
of control specified by the Contro1ID (indirectly via the Command and Parameter Editor).
In this case, we use only TextBoxes, so the PropertyName of each ControlParameter is
Text {c.g., the value of parameter @Name comes from nameTextBox. Text). However, if we
were using a DropDownList, for example, the PropertyName would be Selectedvalue.

. 25.5.2 Modifying the Code-Behind File for the Guestbook Application
After building the Web Form and configuring the data controls used in this example, dou-
ble click the Submit and Clear buttons in Design view to create their corresponding Click
event handlers in the Guestbook.aspx.vb code-behind file (Fig. 25.38). The IDE
generates empty event handlers, so we must add the appropriate code to make these

ASP.NET 2.0 and ASP.NET Ajax 1039

_ e e, EventAry i _
create a date parameter to store the current date
im currentDate As New System.Web.UI.WebControls.Parameter(
"Date", TypeCode.String, DateFime.Now.ToShortDateSteingl)
% ity ot RS s dad ooy g 1 of = wm?m

set the @Date parameter to the date parameter
3messages$q1ﬂata50urce.InsertParameters.RemoveAt(G)
essa esSq1DataSource.InsertParameters.Add(currentDate)

i i 3 % o B :
execute .an INSERT SQL statement to add a new row to the .g
Messages table in the Guestbock database that contains the
current date and the user's name, e-mail address and message

Fig. 25.38 | Code-behind file for the guestbook application.

buttons work properly. The event handler for clearButton {lines 33-38) clears each
TextBox by setting its Text property to an empty string. This resets the form for a new
guestbook submission. :

Lines 8—30 contain the event-handling code for submi tButton, which adds the user’s
informarion to the Messages table of the Guestbook database. Recall that we configured
messagesSqlDataSource’s INSERT command to use the values of the TextBoxes on the
Web Form as the parameter values inserted into the database. We have not yet specified
the date value to be inserted, though. Lines 11-12 assign a String representation of the
current date {e.g., "3/27/06") to a new object of type Parameter. This Parameter object
is identified as "Date” and is given the current date as a default value. The SqlData-

1040 Internet & World Wide Web How to Program

Source’s InsertParameters collection contains an item named Date (at position 0),
which we Remove in line 15 and replace in line 16 by Adding our currentDate parameter.
Invoking Sq1DataSource method Insert in line 21 executes the INSERT command against
the database, thus adding a row to the Messages table. After the data is inserted into the
database, lines 24-26 clear the TextBoxes, and line 29 invokes messagesGridview’s Data-
Bind method to refresh the data that the Gridview displays. This causes messagesSql-
DataSource (the data source of the Gridview) to execute its SELECT command to obtain
the Messages table’s newly updated data.

25.6 Case Study: Secure Books Database Application

This case study presents a web application in which a user logs into a secure website to
view a list of publications by an author of the user’s choosing. The application consists of
several ASPX files. Section 25.6.1 presents the application and explains the purpose of
each of its web pages. Section 25.6.2 provides step-by-step instructions to guide you
through building the application and presents the markup in the ASPX files.

25.6.1 Examining the Completed Secure Books Database Application

This example uses a technique known as forms authentication to protect a page so that
only users known to the website can access it. Such users are known as the site’s members.
Authentication is a crucial tool for sites that allow only members to enter the site or a por-
tion of the site. In this application, website visitors must log in before they are allowed to
view the publications in the Books database. The first page that 2 user would typically req-
uest is Login. aspx (Fig. 25.39). You will soon learn to create this page using a Login con-
trol, one of several ASP.NET login controls that help create secure applications using
authentication, These controls are found in the Login section of the Toolbox. ‘
The Login.aspx page allows a site visitor to enter an existing user name and password
to log into the website. A first-time visitor must click the link below the Log In button to
create a new user before logging in. Doing so redirects the visitor to CreateNewUser . aspx

Fig. 25.39 | Login.aspx page of the secure books database application.

ASP.NET 2.0 and ASP.NET Ajax 1041

(Fig. 25.40), which contains a CreateUserWizard control that presents the visitor
with a user registration form. We discuss the CreateUserWizard control in detail in
Section 25.6.2. In Fig. 25.40, we use the password pa$$word for testing purposes—as you
will learn, the CreateUserWizard requires that the password contain special characters for
security purposes. Clicking Create User establishes a new user account. After creating the
account, the user is automatically logged in and shown a success message (Fig. 25.41).

T Hp for Yo New Accouat :
o paeword:[sasevers]
Co!"lﬁ‘m meoﬂi sessssne “—j

' £ mail: ﬁe}mﬁw,com
Security Quastions [What 5 your e narne)
T —

Fig. 25.40 | CreateNewUser,aspx page of the secure books database application.

Your account has besn successiully cteated,

Fig. 25.41 | Message displayed to indicate that a user account was created successfully.

1042 Internet & World Wide Web How to Program

Clicking the Continue button on the confirmation page sends the user to Books.aspx
(Fig. 25.42), which provides a drop-down list of authors and a table containing the ISBNs,
titles, edition numbers and copyright years of books in the database. By default, all the
books by Harvey Deitel are displayed. Links appear at the bottom of the table that allow
vou to access additional pages of data. When the user chooses an author, a postback occurs,
and the page is updared to display information about books written by the selected author

(Fig, 25.43).

n_:umsm Took Melp s
Omt- 0 326 fius ciwm &lu b #:

Welcome, testoser]! Chick bere 1o Jog ot

Q131869000 Visual Basic 200% Horw to Program
0131525239 Visusl C#% 2005 How to Program
0131483986 Java How 0 Program
0131857576 L+ How 1o Fromam

12

He Bt vew oo Took 4
Qs 3 - BFR

Fig. 25.43 | Books.aspx displaying books by Andrew Goldberg.

ASP.NET 2.0 and ASP.NET Ajax 1043

Note that once the user creates an account and is logged in, Books.aspx displays a
welcome message customized for the particular logged-in user. As you will soon see, 2
LoginName control provides rhis functionality. After you add this control to the page,
ASP.NET handles the details of determining the user name.

Clicking the Click here to log out link logs the user our, then sends the user back to
Login.aspx (Fig. 25.44). This link is created by a LoginStatus control, which handles
the log out details. After logging out, the user would need to log in through Login.aspx
to view the book listing again. The Login control on this page receives the user name and
password entered by a visitor. ASP.NET compares these values with user names and pass-
words stored in a database on the server. If there is a match, the visitor is authenticated
(i.c., the user’s identity is confirmed). We explain the authentication process in detail in
Section 25.6.2. When an existing user is successfully authenticated, Login.aspx redirects
the user to Books . aspx (Fig. 25.42). If the user’s login actempr fails, an appropriate error
message is displayed (Fig. 25.45).

b ! i
Fle Edi Vew Fodntes Tool Hep |

ek - w2 A E R D T

User Name
Pagsword:

Cligk tuag.

o H
Favoritts Took Helo
-

Usar Nama: jte
Password:

%1 i

Fig. 25.45 | Error message displayed for an unsuccessful login attemot.

1044 Internet & World Wide Web How to Program

Notice that Login.aspx, CreateNewUser.aspx and Books.aspx share the same page
header containing the logo image from the fictional company Bug2Bug. Instead of placing
this image at the top of each page, we use a master page to achieve this. As we demonstrate
shortly, a master page defines common GUI elements that are inherited by each page in 2
set of content pages. Just as Visual Basic classes can inherit instance variables and methods
from existing classes, content pages inherit elements from master pages—this is known as
visual inheritance.

25.6.2 Creating the Secure Books Database Application

Now that you are familiar with how this application behaves, you’ll learn how to create it
from scratch. Thanks to the rich set of login and data controls provided by ASP.NET, you
will not have to write ny code to create this application. In fact, the application does not
contain any code-behind files. All of the functionality is specified through properties of
controls, many of which are set through wizards and other visual programming tools.
ASP.NET hides the derails of authenticating users against a database of user names and
passwords, displaying appropriate success or error messages and redirecting the user to the
correct page based on the authentication results. We now discuss the steps you must per-
form to create the secure books database application.

Step 1: Creating the Website

Create 2 new ASP.NET Web Site at http://1ocalhost/Bug2Bug as described previously.
We will explicitly create each of the ASPX files that we need in this application, so delete
the IDE-generated Default. aspx file (and its cotresponding code-behind file) by selecting
Default.aspx in the Solution Explorer and pressing the Delete key. Click OK in the confir-
mation dialog to delete these files.

Step 2: Setting Up the Website's Folders

Before building the pages in the website, we create folders to organize its contents. First,
create an Images folder by right clicking the location of the website in the Solution Explorer
and selecting New Folder, then add the bug2bug. png file to it. This image can be found in
the examples directory for this chapter. Next, add the Books.mdf database file (located in
the exampleDatabases subdirectory of the chapter’s examples directory) to the project’s
App_Data folder. We show how to retrieve data from this database later in the section,

Step 3: Configuring the Application’s Security Settings

In this application, we want to ensure that only authenticated users are allowed to access
Books.aspx (created in Step 9 and Step 10) to view the information in the database. Pre-
viously, we created all of our ASPX pages in the web application’s root directory (e.g.,
http://1ocalhost/ProjectName). By default, any website visitor (regardless of whether
the visitor is authenticated) can view pages in the root directory. ASP.NET allows you to
restrict access to particular folders of a website. We do not want to restrict access to the
root of the website, however, because all users must be able to view Login.aspx and
CreateNewUser.aspx to log in and create user accounts, respectively. Thus, if we want to
restrict access to Books.aspx, it must reside in a directory other than the root directory.
Create a folder named Secure. Later in the section, we will create Books . aspx in this fold-
er. First, ler’s enable forms authenticarion in our application and configure the Secure
folder to restrict access to authenticated users only.

ASP.NET 2.0 and ASP.NET Ajax 1045

Select Wabsite > ASP:NET Configuration to open the Web Site Administration Tool in
a web browser (Fig. 25.46). This tool allows you to configure various oprions that deter-
mine how your application behaves. Click either the Security link or the Security tab to
open a web page in which you can set secutity options (Fig. 25.47), such as the type of
authentication the application should use. In the Users column, click Select authentication
type. On the resulting page (Fig. 25.48), select the radio button next to From the internet
to indicate that users will log in via a form on the website in which the user can enter a
username and password (i.e., the application will use forms authentication). The default
setting—From a local network—relies on users’ Windows user names and passwords for
authentication purposes. Click the Done button to save this change.

Now that forms authentication is enabled, the Users column on the main page of the
Web Site Administration Tool (Fig. 25.49) provides links to create and manage users. As you
saw in Section 25.6.1, our application provides the CreateNewliser.aspx page in which
users can create their own accounts. Thus, while it is possible to create users through the
Web Site Administration Tool, we do not do so here.

Even though no users exist at the moment, we configure the Secure folder to grant
access only to authenticated users (i.e., deny access to all unauthenticated users). Click the
Create access rules link in the Access Rules column of the Web Site Administration Tool
(Fig. 25.49) to view the Add New Access Rule page (Fig. 25.50). This page is used to create
an access rule—a rule that grants or denies access to a particular web application directory
for a specific user or group of users. Click the Secure directory in the left column of the
page to identify the directory to which our access rule applies. In the middle column, select
the radio button marked Anonymous users to specify that the rule applies to users who

yely Site Adrmpstration Togl -

s TR

Welcome to the Web Site Administration Tool

Appiication:/Bug2Bug
Current liser Name:PIO\PAUL

v i
Enables you to manage your appiication's configuration settings.

Fig. 25.46 | Web Site Administration Tool for configuring a web application.

1046 Internet & World Wide Web How to Program

Vot can use the wab Site Adminstiaton Teol o Manage 4l the security settings for
your apphcation. You can seb up users and pasdwaords {authentication), creats rolas
{groups of users), and Create PANTIERONS (rulss for controfing access to parts of your
apphication]

By default, user mformation 5 stared 1 & Microseft 5QL Server Exprass database i the
Data folder af your Wab site. If you want to store user information it & different
database, use the Providar tab to select a different prowider.

Usa the sacudty Setup 2ard be.onfigure seoueity Step Dy SLEG.

Ciick the finks i the table to manage the satbings for yiur applicatian

R

The cusrent authentication Roles are not enabled Craake acoess rules
type s Windows, User Enabie.roles .
management from with: Coe
this Lol s therefore
disabled.
Seigct authenticaton Lypg

A

wty Factetes Tous e
'g_vj 3; f\,, 7 Search L Favdritey @‘ﬁ,’

$363 88, b

& From the internat
Select this option if Lsers wilf access your wab site
from tha public intemet. Users will be reguired Lo log
on using a wab form. The site wil use ferms
authentic3tion to identdy users sccording to user
infermation that you store in 3 database.

Ct Feom 2 local network

Salact this epbon if users wil access your web mite
only from a private local network. The site wil use
budt-in Microsoft windows authentcation to identry
users. Users with a vakd wndows user name and
password will pe able to access your site.

ASP.NET 2.0 and ASP.NET Ajax 1047

Youi £an use the Wab Site Adminsization Toof to manage Ml the secunty settings for
Your BppRCatcn. You Can et up users and passwords (authenbcation;, craste ros
{groups of users), and create pemhigsions [nes for controling access 1o parts of youer
application).

fiy dufauit, user information i stored in a MicroEoft SCL Server Express database in the
Data folder of your Web site, If you want to sbvs user informabion n a2 differant
database, use the Provider tab to select 3 oifferent provider.

. 5 .

Cick the inks in tha table Lo manage the sattings for your appication.

Rokes arm not enabled | Crears accevs nfes
Enable roies Hanage CCESS MUiRT

e L Monaie

Fig. 25.49 | Main page of the Web Site Administration Tool after erabling forms
authentication.

Yol can optionslly add #cceas rulex 0 control sccesy to the wholh Web
sith or tb ivdhvidual folders. Rulss <3¢ BPPYY D SPecit uers arxd roles,
b0 2l UBare, L0 ANGNYIMGUR LBSH, OF TG some combration of these. Rules
apply to subloiders.

Selutt a divectory lor this Rule applies to:
rale:
80 Bugziug

3 4pp_Data

Q) tmages

o

Fig. 25.50 | Add New Access Rule page used to configure directory access.

1048 Internet & World Wide Web How to Program

have not been authenticated. Finally, select Deny in the right column, labeled Permission,
then click OK. This rule indicates that anonymous users (i.e., users who have not identi-
fied themselves by logging in) should be denied access to any pages in the Secure directory
(e.g., Books.aspx). By default, anonymous users who attempt to load a page in the Secure
directory are redirected to the Login.aspx page so that they can identify themselves. Note
that because we did not set up any access rules for the Bug2Bug root directory, anonymous
users may still access pages there (e.g., Login.aspx, CreateNewUser.aspx). We create
these pages momentarily, .

Step 4: Examining the Autogenerated Web. config Files
We have now configured the application to use forms authentication and created an access
rule to ensure that only authenticated users can access the Secure folder. Before creating
the website’s content, we examine how the changes made through the Web Site Adminis-
tration Tool appear in the IDE. Recall that Web. config is an XML file used for application
configuration, such as enabling debugging or storing database connection strings. Visual
Web Developer generates two Web. config files in response o our actions using the Web
Shte Administration Tool—one in the application’s root directory and one in the Secure
folder. [Note: You may need to click the Refresh button in the Solution Explorer to sec these
files.] In an ASP.NET application, a page’s configuration settings are determined by the
current directory’s Web. config file. The settings in this file take precedence over the set-
tings in the root directory’s Web. config file.

After setting the authentication type for the web application, the IDE generates a
Web.config file at http://localhost/Bug2Bug/Web. config, which contains an authen-
tication clement

<authentication mode="Forms" />

This element appears in the root directory’s Web. config file, so the setting applies to the
entire website. The value "Forms" of the mode attribute specifies that we want to use forms
authentication. Had we left the authentication type set to From a local network in the Web
Site Administration Tool, the mode attribute would be set to "Windows”.

After creating the access rule for the Secure folder, the IDE generates a second
web. config file in that folder, This file contains an authorization element that indicates
who is, and who is not, authorized to access this folder over the web. In this application,
we want to allow only authenticated usets to access the contents of the Secure folder, so
the authorization element appears as

<authorization>
<deny users="7" />
</authorization>

Rather than grant permission to each individual authenticated user, we deny access to
those who are not authenticated (i.e., those who have not logged in}. The deny element
inside the authorization element specifies the users to whom we wish to deny access.
When the users attribute’s value is set to "?", all anonymous (i.e., unauthenticated) users
are denied access to the folder. Thus, an unauthenticated user will not be able to load
http://localhost/Bug2Bug/Secure/Books . aspx. Instead, such a user will be redirected
to the Login.aspx page—when a user is denied access to a part of a site, ASP.NET by
default sends the user to a page named Login.aspx in the application’s root directory.

ASP.NET 2.0 and ASP.NET Ajax 1049

Step 5: Creating a Master Page

Now that you have established the application’s security settings, you can create the appli-
cation’s web pages. We begin with the master page, which defines the elements we want
to appear on cach page. A master page is like a base class in a visual inheritance hierarchy,
and content pages are like derived classes. The master page contains placeholders for cus-
tom content created in each content page. The content pages visually inherit the master
page’s content, then add content in place of the master page’s placeholders.

For example, you might want to include a navigation bar (i.e., a series of buttons for
navigating a website) on every page of a site. If the site encompasses a large number of
pages, adding markup to create the navigation bar for each page can be time consuming,
Moreover, if you subsequently modify the navigation bar, every page on the site that uses
it must be updated. By creating a master page, you can specify the navigation bar markup
in one file and have it appear on all the content pages, with only a few lines of markup. If
the navigation bar changes, only the master page changes—any content pages that use it
are updated the next time the page is requested.

In this example, we want the Bug2Bug logo to appear as a header at the top of every
page, so we will place an Image control in the master page. Each subsequent page we create
will be a conitent page based on this master page and thus will include the header. To create
a master page, right click the location of the website in the Solution Explorer and select Add
New Htem.... In the Add New item dialog, select Master Page from the template list and
specify Bug2Bug.master as the filename. Master pages have the filename extension
.master and, like Web Forms, can optionally use a code-behind file to define additional
functionality. In this example, we do not need to specify any code for the master page, so
leave the box labeled Place code in a separate file unchecked. Click Add to create the page.

The IDE opens the master page in Source mode (Fig. 25.51) when the file is first crea-
ted. [Note: We added a line break in the DOCTYPE element for presentation purposes.] The

sl <!DOCTYREL homl PUBLIC *—//MAC//DTD RMTML 1.0 Trassiticnal//EN*
4 “REths fwww i ara/ TR/ shemil/DID/ xhtad - Lrshaitionel ged™r
B

6E] <BCTipT Tunat=Tserver™>

*

a b </scxipty

5
10;;3 <himl xmiase¥ i
158 chead umar="server">
: <cicierdncicied Pagec/title>
§ea.t1 g
<body>
<form ic="forml"™ runat="sarver">
Aivr
<asp;:contentplacehalder Ld=*CostantPiacaHcoiderl™ mmt-"nmr'ﬁ
<faspieostentplacenclder>
<fdiv>
: </ Lorm>
i |- </pody>
ik e/neal>
i

Fig. 25.51 | Master page in Source mode.

1050 Internet & World Wide Web How to Program

markup for a master page is almost identical to that of a Web Form. One difference is that
a master page contains a Master directive (line 1 in Fig. 25.51), which specifies that chis
file defines a master page using the indicated Language for any code. Because we chose not
to use a code-behind file, the master page also contains a script element (lines 6--8). Code
that would usually be placed in a code-behind file can be placed in a script element.
However, we remove the script element from this page, because we do not need to write
any additional code. After deleting this block of markup, set the title of the page to
Bug2Bug. Finally, notice that the master page contains a ContentPlaceHolder control
(lines 17-18 of Fig. 25.51). This control serves as a placcholder for content that will be
defined by a content page. You will see how to define content to replace the Content-
PlaceHolder shortly.

At this point, you can edit the master page in Design mode (Fig. 25.52) as if it were
an ASPX file. Notice that the ContentPlaceHolder control appears as a large rectangle
with a gray bar indicating the control’s type and 1D. Using the Properties window, change
the ID of this control to bodyContent.

To create a header in the master page that will appear at the top of each content page,
we insert a table into the master page. Place the cursor to the left of the ContentPlace-
Holder and select Layout > Insert Table. In the Insert Table dialog, click the Template radio
button, then select Hoader from the drop-down list of available table templates. Click OK
to create a table that fills the page and contains two rows. Drag and drop the Content-
PlaceHolder into the bottom table cell. Change the valign property of this cell to top, so
the ContentPlaceHolder vertically aligns with the top of the cell. Next, set the Height of
the top table cell to 130. Add to this cell an Image control named headerImage with its
Imagelr1 property set to the bug2bug. png file in the project’s Images folder. Figure 25.53
shows the markup and Design view of the completed master page. As you will see in-Step

Fig. 25.52 | Master page in Design mode.

Fig. 25.53 | Bug2Bug.master page that defines a logo image header for alf pages in the secure
book database application. {Part | of 2.)

ASP.NET 2.0 and ASP.NET Ajax 1051

Fig. 25.53 | Bug2Bug.master page that defines a logo image header for all pages in the secure
book database application. (Part 2 of 2.)

1052 Internet & World Wide Web How to Program

6, a content page based on this master page displays the logo image defined here, as well
as the content designed for that specific page (in place of the ContentPlaceHolder).

Step 6: Creating a Content Page

We now create a content page based on Bug2Bug.master. We begin by building Create-
NewUser.aspx. To create this file, right click the master page in the Solution Expiorer and
select Add Content Page. This action causes a Default.aspx file, configured to use the
master page, to be added to the project. Rename this file CreateNewUser. aspx, then open
it in Source mode (Fig. 25.54). Note thar this file contains a Page directive with a Lan-
guage property, a MasterPageFile property and a Title property. The Page direcrive
indicates the MasterPageFile that is used as a starting point for this new page’s design. In
this case, the MasterPageFi e property is set to "~/Bug2Bug.master" to indicate that the
current file is based on the master page we just created. The Title property specifies the
title that will be displayed in the web browser’s title bar when the content page is loaded.
This value, which we set to Create a New User, replaces the value (i.e., Bug2Bug) set in the
title element of the master page.

Title="Czeace a New Usexr” ¥

<asp:Contens ID=*Concenti™ TontentPlsceHolderiim*bsdytencent™
Runaz="3erver=>
</sap:Content>

Fig. 25.54 | Content page CreateNewUser.aspx in Source mode.

Because CreateNewUser. aspx’s Page directive specifies Bug2Bug.master as the page’s
MasterPageFile, the content page implicitly contains the contents of the master page,
such as the DOCTYPE, htm1 and body elements. The content page file does not duplicate the
XHTML elements found in the master page. Instead, the content page contains 2 Content
control {lines 3-5 in Fig. 25.54), in which we will place page-specific content that will
replace the master page’s ContentPlacetolder when the content page is requested. The
ContentPlaceHolderID property of the Content control identifies the ContentPlac-
eHolder in the master page that the control should replace—in this case, bodyContent.

The relationship between a content page and its master page is more evident in Design
mode (Fig. 25.55). The gray shaded region contains the contents of the master page
Bug2Bug.master as they will appear in CreateNewUser.aspx when rendered in a web
browser. The only editable part of this page is the Content control, which appears in place
of the master page’s ContentPlaceHolder.

Step 7: Adding a CreateUserWizard Control to a Content Page

Recall from Section 25.6.1 that CreateNewUser. aspx is the page in our website that allows
first-time visitors to create user accounts. To provide this functionality, we use a Create-
UserWizard control. Place the cursor inside the Content control in Design mode and dou-
ble click CreateUserwizard in the Login section of the Toolbox to add it to the page at the

ASP.NET 2.0 and ASP.NET Ajax 1053

Fig. 25.55 | Content page CreateNewUser .aspx in Design mode.

current cursor position. You can also drag-and-drop the control onto the page. To change
the CreateUserwizard's appearance, open the CreateUserWizard Tasks smart tag menu,
and click Auto Format. Select the Professional color scheme.

As discussed previously, a CreateUserWizard provides a registration form that site vis-
itors can use to create a user account. ASP.NET creates a SQL Server database (named
ASPNETDB. MDF and located in the App_Data folder) to store the user names, passwords and
other account information of the application’s users. ASP.NET also enforces a default set
of requirements for filling out the form. Each field on the form is required, the password
must contain at least seven characters (including at least one nonalphanumeric character)
and the two passwords entered must match. The form also asks for 2 security question and
answer that can be used to identify a user in case the user needs to reset or recover the
account’s password.

After the user fills in the form’s fields and clicks the Create User button to submit the
account information, ASP.NET verifies that all the form’s requirements were fulfilled and
attempts to create the user account. If an error occurs (e.g., the user name already exists),
the CreateUserwizard displays a message below the form. If the account is created suc-
cessfully, the form is replaced by a confirmation message and a button that allows the user
to continue. You can view this confirmation message in Design mode by selecting Com-
plete from the Step drop-down list in the CreateUserWizard Tasks smart tag menu.

When a user account is created, ASP.NET automatically logs the user into the site (we
say more about the login process shortly). At this point, the user is authenticated and
allowed to access the Secure folder. After we create Books.aspx later in this section,
we set the CreateUserWizard’s ContinueDestinationPagelirl property to ~/Secure/
Books . aspx to indicate that the user should be redirected to Books. aspx after clicking the
Continue button on the confirmation page.

Figure 25.56 presents the completed CreateNewUser . aspx file (reformatred for read-
ability). Inside the Content control, the CreateUserWizard control is defined by the
markup in lines 7-36. The start tag (lines 7-10) contains several properties that specify

1054 Internet & World Wide Web How to Program

formatting styles for the control, as well as the ContinueDestinationPageUr1 property,
which you will set later in the chaprer. Lines 11-16 specify the wizard’s two steps—
CreatelserwizardStep and CompleteWizardStep—in a WizardSteps element. Create~
UserWizardStep and CompleteWizardStep are classes that encapsulate the details of cre-
ating a user and issuing a confirmation message. Finally, lines 17-35 contain elements that
define additional styles used to formart specific parts of the control.

The sample outputs in Fig. 25.56(a) and Fig. 25.56(b} demonstrate successfully cre-
ating a user account with CreateNewUser . aspx. We use the password pa$$word for testing
purposes. This password satisfies the minimum length and special character requirement
imposed by ASP.NET, buct in a real application, you should use a password that is more
difficult for someone to guess. Figure 25.56(c) illustrates the error message that appears
when you attempt to create a second user account with the same user name—ASP.NET
requires that each user name be unique.

Fig. 25.56 | CreateNewuUser.aspx content page that provides a user registration form. (Part |
of 2.}

ASP.NET 2.0 and ASP.NET Ajax 1053

He Bht Vew Fauries Took - Hels

BB Lo

Your account has been successfully craated.
Continue

i RN . ottt t
Fie Edt Vew Favrites. Tool reb

‘Security Question:
Sacurity Angwer: Spt T

Fiaasa anter 3 diffarent ugar name.

Fig. 25.56 | CreateNewUser.aspx content page that provides a user registration form. (Part 2
of 2.)

1056 Internet & World Wide Web How to Program

Step 8: Creating a Login Page

Recall from Section 25.6.1 that Login. aspx is the page in our website thar allows returning
visitors to log into their user accounts. To create this functionality, add another content
page named Login.aspx and set its title to Login. In Demgn mode, drag a Login contro}
(located in the Login section of the Toolbox) to the page’s Content control. Open the
Auto Format dialog from the Login Tasks smart tag menu and sex the control’s color scheme
to Professionat.

Next, configure the Login contrel to display a link to the page for creating new users.
Set the Login control’s CreateUserUr] property to CreateNewlser. aspx by clicking the
ellipsis butron to the property’s right in the Properties window and selecting the Create-
NewlUser.aspx file in the dialog. Then set the CreateUserText property to Click here to
create a new user, These property values cause a link to appear in the Login control.

Finally, change the value of the Login control’'s DisplayRememberMe property to
False. By defaul, the conwrol displays a checkbox and the text Remember me next time.
This can be used to allow a user ro remain authenticated beyond a single browser session
on the user’s current computer. However, we want to require that users log in each time
they visit the site, so we disable this option.

The Login control encapsulates the details of logging a user into a web application
(i.e., authenricating a user). When a user enters a user name and password, then clicks the
Log In button, ASP.NET determines whether the items provided match those of an
account in the membershlp database (i.c., ASPNETDB.MDF created by ASP.NET). If thcy
match, the user is authenticated (i.e., the user’s identity is confirmed), and the browser is
reditected to the page specified by the Login control’s DestinationPagelr1 property. We
set this property to the Books. aspx page after creating it in the next section. If the user’s
identity cannot be confirmed (i.c., the user is not authenticated), the Login control dis-
plays an error message (see Fig. 25.57), and the user can attempt to log in again.

i o
aspilogin ID="Logint" runats"server" BackColor="#F7F6F3"
BorderColor="#E6E2D8" BorderPadding="4" Border‘Stylea"So'hd“
‘BorderWidth="1px" €reateliserText="Click hére to create a new user’
Createtsertr1="~/CreateNewlUser.aspx" DisplayRememberMe="False"
Font-Names="Verdana" Font-5ize="0.8em" ForeCaTor&"#333333“

Dest'inatwnPageUr'lz ‘~/Secure/Books.aspx’>

PEEES

Fig. 25.57 | Login.aspx content page using a Login control. (Part fof2)

ASP.NET 2.0 and ASP.NET Ajax 1057

He €t Vew Fmaike Tods Help
Qoo - 3 4@ e O
s @) ooy Bugomn s

W A T

Fig. 25.57 | Login.aspx content page using a Login control. (Part 2 of 2.)

Figure 25.57 presents the completed Login.aspx file. Note that, as in CreateNew-
User.aspx, the Page directive indicates that this content page inherits content from
Bug2Bug.master. In the Content control that replaces the master page’s ContentPlace-
Holder with ID bodyContent, lines 6—19 create a Login control. Note the CreateUserText
and CreateUserUr1 properties (lines 8-9} that we st using the Properties window. Line
11 in the start tag for the Login control contains the DestinationPageUr? {you will set
this property in the next step). The elements in lines 12-18 define various formarting
styles applied to parts of the control. Note that all of the functionality related to actually
logging the user in or displaying error messages is completely hidden from you.-

When a user enters the user name and password of an existing user account, ASP.NET
authenticares the user and writes to the client an encrypted cookie containing information
about the authenticated user. Encrypted data is data translated into a code that only the
sender and receiver can understand—thereby keeping it private. The encrypted cookie
contains a String user name and a Boolean value thar specifies whether this cookie should
persist {i.¢., remain on the client’s computer) beyond the current session. Our applicacion
authenticates the user only for the current session. '

Step 9: Creating a Content Page That Only Authenticated Users Can Access
A user who has been authenticated will be redirected to Books . aspx. We now create the
Books . aspx file in the Secure folder—the folder for which we set an access rule denying
access to anonymous users. If an unauthenticated user requests this file, the user will be
redirected to Login. aspx. From there, the user can cither log in or a create a new account,
both of which will authenticate the user, thus allowing the user to return to Books . aspx.
To create Books . aspx, right click the Secure folder in the Solution Explorer and select
Add New ltem.... In the resulting dialog, select Web Form and specify the filename
Books. aspx. Check the box Select Master Page to indicate that this Web Form should be
created as a content page that references a master page, then click Add. In the Select a
Master Page dialog, sclect Bug2Bug.master and click OK. The IDE creates the file and

1058 Internet & World Wide Web How to Program

opens it in Source mode Change the Title property of the Page directive to o0 Book Infor-
mation.

Step 10: Customizing the Secure Page

To customize the Books . aspx page for a particular user, we aad 2 welcome message con-
taining a2 LoginName control, which displays the current authenticated user name. Open
Books.aspx in Design mode. In the Content control, type Welcome followed by a comma
and a space. Then drag a LoginName control from the Toolbox onto the page. When this
page executes on the server, the text [UserName] that appears in this control in Design
mode will be replaced by the current user name. In Source mede, type an exclamation
point (1) directly after the LoginName control (with no spaces in between). [Note: If you
add the exclamation point in Design mode, the IDE may insert extra spaces or a line break
between this character and the preceding control. Entering the t in Source mode ensures
that it appears adjacent to the user’s name.]

Next, add a LoginStatus control, which will allow the user to log out of the website
when finished viewing the listing of books in the database. A LoginStatus control renders
on a web page in one of two ways—by default, if the user is not authenticated, the control
displays a hyperlink with the text Login; if the user is authenticated, the control displays a
hyperlink with the text Logout. Each link performs the stated action. Add a LoginStatus
control to the page by dragging it from the Toolbox onto the page. In this example, any
user who reaches this page must already be authenricated, so the control will always render
as a Logout link. The LoginStatus Tasks smart tag menu allows you switch between the
control’s Views. Select the Logged In view to see the Logout link. To change the actual text
of this link, modify the control’s LogoutText property to Click here to Tog out. Next,
set the LogoutAction property to RedirectToLoginPage.

Step 11: Connecting the CreateUserWizard and Login Controls to the Secure Page
Now that we have created Books.aspx, we can specify that this is the page to which the
CreateUserWizard and Login controls redirect users after they are authenticated. Open
CreateNewlser.aspx in Design mode and set the CreateUserWizard control’s Continue-
DestinationPageUr1 property to Books.aspx. Next, open Login. aspx and select
Books . aspx as the DestinationPageUr1 of the Login control.

At this point, you can run the web application by selecting Debug > Start Without
Debugging. First, create a user account on CreateNewlser.aspx, then notice how the
LoginName and LoginStatus controls appear on Books . aspx, Next, log out of the site and
log back in using Login.aspx.

Step 12: Generating a DataSet Based on the Books . mdf Database
Now, let’s add the content (i.e., book information) to the secure page Books.aspx. This
page will provide a DropDownList containing authors’ names and a Gridview displaying
information about books written by the author selected in the DropDowntist. A user will
select an author from the DropDowniist to cause the Gridview to display informarion
abourt only the books written by the selected author. As you will see, we create this func-
tionality entlrely in Design mode without writing any code.

To work with the Books database, we use an approach slightly different than in the
precedmg case study, in which we accessed the Guestbook database using a Sq1DataSource
control. Here we use an ObjectDataSource control, which encapsulates an object that

ASP.NET 2.0 and ASP.NET Ajax 1059

provxdes access to a data source. An ObjectDataSource can encapsu]ate a TableAdapter
and use its methods to access the data in the database. This helps separate the data-access
logic from the presentation logic. As you will see shortly, the SQL statements used to
retrieve data do not appear in the ASPX page when using an ObjectDataSource.

The first step in accessing data using an ObjectDataSource is to create a DataSet that
contains the data from the Books database required by the application. In Visual Basic
2005 Express, this occurs automatically when you add a data source to a project. In Visual
Web Developer, however, you must explicitly generate the DataSet. Right click the
project’s location in the Solution. Explorer and select Add New ltem.... In the resulting
dialog, select DataSet and specify BooksDataSet.xsd as the filename, then click Add. A
dialog will appear that asks you whether the DataSet should be placed in an App_Code
folder—a folder whose contents are compiled and made available to all pares of the project.
Click Yas for the IDE to create this folder to store Book§DataSet .xsd.

Step 13! Creating and Configuring an AuthorsTableAdapter

Once the DataSet is added, the Dataset Designer will appear, and the TableAdaptor Con-
figuration Wizard will open. This wizard allows you to configure a TableAdapter for filling
a DataTable in a DataSet with data from a database. The Books.aspx page requires two
sets of data-—a list of authors that will be displayed in the page’s DropDownList (created
shortly) and a list of books written by a specific author. We focus on the first set of data
here—the authors. Thus, we use the TableAdapter Configuration Wizard first to configure
an AuthorsTableAdapter. In the next step, we will configure a TitlesTableAdapter.

In the TableAdapter Configuration Wizard, select Books .mdf from the drop-down list.
Then click Next > twice to save the connection string in the application’s Web. config file
and move to the Choose a Command Type screen.

In the wizard’s Choose a Command Type screen, select Use SQL statements and click
Next >. The next screen allows you to enter a SELECT statement for retrieving data from
the database, which will then be placed in an Authors DataTable within the Books-
DataSet. Enter the SQL statement

SELECT AuthorID, FirstName + ' ' + LastName AS Name FROM Authors

in the text box on the Enter a SQL Statement screen. This query selects the AuthorID of
each row, This query’s result will also contain the column Name that is created by concat-
enating each row’s FirstName and LastName, separated by a space. The AS SQL keyword
allows you to generate a column in a query result—called an alias—that contains a SQL
expression’s result (e.g., FirstName + ' ' + LastName). You'll soon see how we use this
quety’s result to populate the DropDownLi st with items containing the authors’ full names.
After entering the SQL statement, click the Advanced Options... button and uncheck
Generate Insert, Update and Delste statements, since this application does not need to
modify the database’s contents. Click OK to close the Advanced Options dialog. Click
Next > to advance to the Choose Methods to Generate screen. Leave the default names and
click Finish. Notice that the DataSet Designer (Fig. 25.58) now displays a DataTable
named Authors with AuthorID and Name members, and Fi11 and GetData methods.

Step 14: Creating and Configuring a TitlesTableAdapter
Books . aspx needs to access a list of books by a specific author and a list of authors. Thus
we must create a TitlesTableAdapter that will retrieve the desired information from the

1060 Internet & World Wide Web How to Program

Fig. 25.58 | Authors DataTable in the Dataset Designer.

database’s Tit1es table. Right click the Dataset Designer and from the menu that appears,
select Add > TableAdapter... to launch the TableAdapter Configuration Wizard. Make sure
the BaoksConnectionString is selected as the connection in the wizard’s first screen, then
click Next >, Choose Use SQL statemants and click Next >.

In the Enter a SQL Statement screen, open the Advanced Options dialog and uncheck
Qenerate Insert, Update and Delete statements, then click OK. Our application allows users
to filter the books displayed by the author’s name, so we need to build a query that takes
an AuthorID as a parameter and returns the rows in the Titles table for books written by
that author. To build this complex query, click the Query Builder... button.

In the Add Table dialog that appears, select AuthoriSBN and click Add. Then Add the
Titles table, too. Our query requites access to data in both of these tables, Click Close to
exit the Add Table dialog. In the Query Builder window’s top pane (Fig. 25.59), check the
box marked * {All Columns) in the Titles table. Next, in the middle pane, add a row with
Column set to AuthorISBN.AuthorID. Uncheck the Output box, because we do not want

JSELECT Titias.

FROM AuthorFSBI INNER JO
Tithes ON AuthorISBH.ISBR = Tetles. I58H
[WHERE (Author 58N Author!D) = @authorID}

Fig. 25.59 | Query Builder for designing 2 query that selects books written by a particular
author.

ASP.NET 2.0 and ASP.NET Ajax 1061

the AuthoriD to appear in our query result. Add an @authorID parameter in this row’s Filter
column. The SQL statement generated by thesc actions retrieves information abour all
books written by the author specified by parameter @authorID. The statement first merges
the data from the AuthorISBN and Titles tables. The INNER JOIN clause specifies that the
15BN columns of each table are compared to determine which rows are merged. The INNER
101N results in a temporary table containing the columns of both tables. The WHERE clause
of the SQL statement restricts the book information from this temporary table to a specific
author (i.e., all rows in which the AuthorID column is equal to @authorID).

Click OK to exit the Query Builder, then in the TableAdapter Configuration Wizard,
click Next . On the Choose Methods to Generate screen, enter Fi11ByAuthorID and Get-
DataByAuthorID as the names of the two methods to be generated for the TitlesTable-
Adapter. Click Finish to exit the wizard. You should now see a Titles DataTable in the
Dataset Designer (Fig. 25.60).

g

Fig. 25.60 | Dataset Designer after adding the TitTesTableAdapter.

Step 15: Adding a DropDownList Containing Authors’ First and Last Names

Now that we have created a BooksDataSet and configured the necessary TabteAdapters,
we add controls to Books . aspx that will display the data on the web page. We first add the
DropDownLi st from which users can select an author. Open Books . aspx in Design mode,
then add the text Author: and a DropDownList control named authorsDropDownList in
the page’s Content control, below the existing content. The DropDownList initially dis-
plays the text {Unbound]. We now bind the list to a data source, so the list displays the
author information placed in the BooksDataSet by the AuthorsTableAdapter. In the
DropDownList Tasks smart tag menu, click Choose Data Sourcs... to start the Data Source
Configuration Wizard. Select <New data source...» from the Select a data source drop-
down list in the first screen of the wizard. Doing so opens the Choose a Data Source Type
screen. Select Object and set the ID to authorsObjectDataSource, then click OK.

An ObjectDataSource accesses data through another object, often called a business
object. Recall thar the middle tier of a three-tier application contains business logic that
controls the way an application’s top-tier user interface (in this case, Books . aspx) accesses
the bottom tier’s data {in this case. the Books.mdf database file). Thus, a business object
represents the middle tier of an application and mediates interactions between the other
two tiers. In an ASP.NET web application, a TableAdapter typically serves as the business
object that retrieves the data from the bottom-tier database and makes it available to the
rop-tier user interface through a Dataset. In the Choose a Business Object screen of the
Configure Data Source wizard (Fig, 25.61), selec BooksDataSetTableAdapters.Authors-
TableAdapter. [Note: You may need to save the project to see the AuthorsTableAdapter.]

1062 internet & World Wide Web How to Program

BooksDataSetTableAdapters isa namespace declared by the IDE when you create Books-
DataSet. Click Next > to continue.

The Define Data Methods screen (Fig. 25.62) allows you to specify which of the busi-
ness object’s methods (in this case, AuthorsTableAdapter}) should be used to obtain the
data accessed through the ObjectDataSource. You can choose only methods that return
data, so the only choice is method GetData, which returns an AuthorsbataTable. Click
Einish to close the Configure Data Source wizard and return to the Data Source Configura-
tion Wizard for the DropDownList (Fig. 25.63). The new data source (i.e., authors

mahmn&dﬂmhmamxmm(hm.?&mmnh&\

Choose & method of the busress cbjeck that reisens deta o sl Wit he SELECY operstign. The
method can renen 8 DateSet, Dataieader, o strangry-typed cobection.

T Evample GetProducisIn}7 categreyld), netume a Datdet.

Fig. 25.62 | Choosing a data method of a business abject for use with an
ObjectDataSource.

ASP.NET 2.0 and ASP.NET Ajax 1063

g

Selnct s datn ekt 1n dijpiny s the OrotDowrlist:
e A

Stbect 5 data feld fox the v of the DropDoweist:
e

kt i3

ta source for a DropDownList.

Fig. 25.63 | Choosinga da

ObjectDataSource) should be selected in the top drop-down list. The other two drop-
down lists on this screen allow you to configure how the DropDownList control uses the
data from the dara source. Set Name as the data field to display and AuthorID as the data
field to use as the value. Thus, when authorsbropDownList is rendered in a web browser,
the list items display the author names, but the underlying values associated with each item
are the author AuthorIDs. Finally, click OK to bind the DropDownL i st to the specified data.

The last step in configuring the DropDownList on Books.aspx is to set the control’s
AutoPostBack property to True. This property indicates that a postback occurs each time
the user selects an item in the DropDownList. As you will see shortly, this causes the page’s
Gridview (created in the next step) to display new dara.

Step 16; Creating a GridView to Display the Selected Author’s Books

We now add a Gridview to Books . aspx for displaying the book information by the author
selected in the authorsDropBownList. Add a Gridview named tit]esGridview below the
other controls in the page’s Content control.

To bind the Gridview to data from the Books database, select <New data source...>
from the Choose Data Saurce drop-down list in the GridView Tasks smart tag menu. When
the Data Source Configuration Wizard opens, select Object and set the ID of the data source
to titlesObjectDatasSource, then click OK. In the Choose a Business Object screen, select
the BooksDataSetTableAdapters.TitlesTableAdapter from the drop-down list to indi-
cate the object that will be used to access the data. Click Next ». In the Define Data Methods
screen, leave the defaule selection of GetDataByAuthorID as the method thar will be
invoked to obrain the data for display in the Gridview. Click Next >.

Recall that Tit1esTableAdapter method GetDataByAuthorID requires a parameter to
indicate the AuthorID for which data should be retrieved. The Define Parameters screen
(Fig. 25.64) allows you to specify where to obtain the value of the @authorID parameter
in the SQL statement executed by GetDataByAuthorID. Select Control from the Parameter
source drop-down list. Select authorsDropDownList as the ControllD (i.e., the ID of che

1064 Internet & World Wide Web How to Program

@ Define Parameters
¥,

e izardhas detcnd o or moce parametiry i our SELECT e, R each prametr i the SELECT
tmethod, choose & sodrce for the parameter's valie, _ : L :

Yok

Fig. 25.64 | Choosing the data source for a parameter in a business abject’s data method.

parameter source control). Next, enter 1 as the DefaultValue, so books by Harvey Deitel
(who has AuthorID 1in the database) display when the page first loads (i.e., before the user
has made any selections using the authorsDropDownLi st}. Finally, click Finish to exit the
wizard. The Gridview is now configured to display the dara retrieved by TitlesTable-
Adapter .GetDataByAuthorID, using the value of the current selection in authorsDrop-
DownList as the parameter. Thus, when the user selects a new author and a postback
occurs, the Gridvi ew displays a new set of data.

Now that the Gridview is tied to a data source, we modify several of the control’s
properties to adjust its appearance and behavior. Set the Gridview's Ce11Padding property
to 5, set the BackColor of the AlternatingRowStyle to LightYellow, and set the Back-
Color of the HeaderStyle to LightGreen. Change the Width of the control to 600px to
accommodate long data values.

Next, in the GridView Tasks smart tag menu, check Enable Sorting. This causes the
column headings in the GridView to turn into hyperlinks that allow users to sort the data
in the Gridview. For example, clicking the Titles heading in the web browser will cause
the displayed dara to appear sorted in alphabetical order. Clicking this heading a second
time will cause the data to be sorted in reverse alphabetical order. ASP.NET hides the
details required to achieve this functionality.

Finally, in the GridView Tasks smart tag menu, check Enable Paging. This causes the
Gridview to split across multiple pages. The user can click the numbered links at the bottom
of the Gridview control to display a different page of data. Gridview's PageSize property
determines the number of entries per page. Set the PageSize property to 4 using the Prop-
erties window so that the Gridview displays only four books per page. This technique for
displaying dara makes the site more readable and enables pages to load more quickly (because
less data is displayed at one time). Note that, as with sorting data in a GridView, you do not

ASP.NET 2.0 and ASP.NET Ajax 1063

need to add any code to achieve paging functionality. Figure 25.65 displays the completed
Books . aspx file in Design mode.

Fig. 25.65 | Completed Books.aspx in Design mode.

Step 17: Examining the Markup in Books . aspx

Figure 25.66 presents the markup in Books . aspx (reformatted for readability). Aside from
the exclamation point in line 8, which we added manually in Source mode, all the remain-
ing markup was generated by the IDE in response to the actions we petformed in Design
mode. The Content control (lines 5-53) defines page-specific content that will replace the
ContentPlaceHolder named bodyContent. Recall that this control is located in the master
page specified in line 3. Line 8 creates the LoginName control, which displays the authen-
ticated user’s name when the page is requested and viewed in a browser. Lines 9-11 create
the LoginStatus control. Recall that this control is configured to redirect the user to the
login page after logging out (i.¢., clicking the hyperlink with the LogoutText).

Lines 15-18 define the DropbownList that displays the names of the authors in the
Books database. Line 16 contains the control’s AutoPostBack property, which indicates
that changing the selected item in the list causes a postback to occur. The DataSourceId
property in line 16 specifies that the DropDownList’s items are created based on the data
obtained through the authorsObjectDataSource (defined in lines 19-23). Line 21 spec-
ifies that this ObjectDataSource accesses the Books database by calling method GetData
of the BooksDataSet’s AuthorsTableAdapter (line 22).

Lines 2642 create the GridView that displays information about the books written
by the selected author. The start tag (lines 26-29) indicates that paging (with a page size
of 4) and sorting are enabled in the Gridview. The AutoGenerateColumns property indi-
cates whether the columns in the Gridview are generated at runtime based on the fields in
the data source. This property is set to False, because the IDE-generated Columns element

1066 Internet & World Wide Web How to Program

<asp:loginName ID="LoginNamel” runat="server" />

<asp:loginStatus ID="LoginStatusl" runat="server
LogoutAction="RedirectToLoginPage"
togoutText="Click here to log out” />

="True" DataSourceID="authorsObjectbataSource”
"Name" DataValueField=

asp ObjectDataSource ID="authorsObjectDataSource
runat="server"” 01dVa1uesParameterFormatStr1ng=“orxgina1,{0}'
Se1ectMethod-"GetData“

asp:Gridview ID=“t1t1ésGr1dV1ew“ 1 :] Pagtngs"T
AllowSorting="True" AutoGenerateCo1umns—“Fa?se“ Ce?TPadd1ng—“5

DataKeyNames="ISBN" DataSourceID—“tthesObJettDataSource
ize="4" Width="600px"> :

asp Ob]ectDataSource iD= t1t1e50b3ect ataSource runat="servet’
01dVa1uesParametechrmatStr1ng=“ar1g)na1_{0 :
SelectMethod="GetDataByAuthorID™ _
TypeName—"BooksbataSetTah1eAdapter TitlesT bleAd pt r“>

asp: Contro]Parameter-ContrulID="auth0rsDropBownL1st
Defaultvalue="1" Name="authorlD"
tyName="Se1ectedVa]ue“ Typeu"IntBZ" />

Fig. 25.66 | Markup for the completed Books . aspx f|Ie (Part | of 2.)

ASP.NET 2.0 and ASP.NET Ajax 1067

Olilm VMB“EOOSHWNM
0131525239 Vimsal C# 2005 How to Program
0131483986 Java How to Program
0131657476 C+ How to Program

0131426443
0131450913 Internet & Workd Wide Web How to Prograc.
0131828274

Welcome, testaser ! Click bere to

: 2 i
0131450913 Indernet & Werdd Wide Web How s Program

Fig. 25.66 | Markup for the completed Books . aspx file. (Part 2 of 2.)

1068 Internet & World Wide Web How to Program

(lines 30-39) already specifies the columns for the Gridview using BoundFields. Lines
43-52 define the ObjectDataSource used to fill the Gridview with data. Recall that we
configured titlesObjectDataSource to use method GetDataByAuthorID of the Books-
DataSet’s TitlesTableadapter for this purpose. The ControlParameter in lines 48-50
specifies that the value of method GetDataByAuthorID’s parameter comes from the
SelectedValue property of the authorsDropDownList.

Figure 25.66(a) depicts the default appearance of Books.aspx in a web browser.
Because the DefaultValue property (line 49) of the ControlParameter for the titles-
ObjectDataSource is set to 1, books by the author with AuthorID 1 (i.c., Harvey Deitel)
are displayed when the page first loads. Note that the GridView displays paging links below
the data, because the number of rows of data returned by GetDataByAuthorID is greater
than the page size. Figure 25.66(b) shows the Gridview after clicking the 2 link to view
the second page of data. Figure 25.66(c) presents Books .aspx after the user selects a dif-
ferent author from the authorsDropDownList. The data fits on one page, so the Gridview
does not display paging links.

25.7 ASP.NET Ajax

In this section, we introduce how you can use ASP.NET Ajax to quickly and easily add
Ajax functionality to existing ASP.NET web applications. You can download the latest
version of ASP.NET Ajax from www.asp.net/ajax/downloads. Run the.msi installer you
downloaded and follow the on-screen instructions to install the Ajax Extensions package.

The Ajax Extensions package implements basic Ajax functionality. Microsoft also
provides the ASP.NET Ajax Control Toolkit, which contains rich, Ajax-enabled GUI
controls. There is also a link to the download the latest version of the Ajax Control Toolkit
from the ASP.NET Ajax download page listed above. The toolkit does not come with an
installer, so you must extract the contents of the toolkit’s ZIP file to your hard drive.

To make using the ASP.NET Ajax Control Toolkit more convenient, you'll want to
add its controls to the Toolbox in Visual Web Developer (or in Visual Studio) so you can
drag and drop controls onto your Web Forms. To do so, right click the Toolbox and
choose Add Tab. Type Ajax Toolkit in the new tab. Then right click the tab and select
Choose ltems. Navigate to the folder in which you extracted the Ajax Control Toolkir and
select AjaxControlToolkit.d11 from the SampleWebSite\Bin folder. A list of available
Ajax controls will appear under the Ajax Toolkit tab when you are in Design mode.

To demonstrate ASP.NET Ajax capabilities we'll enhance the vValidation application
from Fig, 25.17. The only modifications to this application will appear in its .aspx file.
This application was not initially set up to support Ajax functionality, so we must first
modify the web. config file. First, in Visual Web Developer select File > New Website... to
display the New Website dialog. Then, create an empty ASP.NET Ajax-Enabled Website.
Open the web.config file in this new application and copy its contents. Next, open the
Validation application and replace the contents of its web. config file with the contents
of the web.config file you just copied. The new web.config file adds the
system.web.extensions, httpHandlers and httpModules sections, which specify the set-
tings for running scripts that enable Ajax functionality. If you'd like to learn more about
the details of these web.config modifications, please visit the site www.asp.net/ajax/doc-
umentation/live/configuringASPNETAJAX. aspx.

ASP.NET 2.0 and ASP.NET Ajax 069

We'll now use Ajax-enabled controls to add Ajax features to this application.
Figure 25.67 is a modified validation.aspx file that enhances the application by using
the ToolkitScriptManager, UpdatePanel and ValidatorCalloutExtender controls.

1070 Internet & Warld Wide Web How to Program

ajax:V-‘HdaoCﬂoutE ende
runat="server" - S
TargetControlID="gmailFormatVa

Funat="server"
TargetControl ID="
ey

<aspﬂpdatePane] ID-"UpdatePan _1“_
<ContentTemp‘i ate>

<br f><hr’ /> , L
<asp:Label ID.."outputLabe?'- = _

Text«"Thank you' for your' s b
</asp Labeb :

Fig. 25.67 | validation appllcatmn enhanced by ASP.NET Ajax. (Part 2 of 3.)

ASP.NET 2.0 and ASP.NET Ajax 1071

Al fialds are reguired and must contain valid information.

Name:

Blesse gnter an &
mail addeasa in a
valid format.

We received the following information:
Name: Bob White

E-mail address: buwhite/@emai. com
Phone msnber, 555-111-2222

Fig. 25.67 | validation application enhanced by ASP.NET Ajax. (Part 3 of 3.)

ScriptManager Control

The key control in every ASPNET Ajax-enabled application js the ScriptManager, which
manages the client-side scripts that enable asynchronous Ajax functionality. There can be
only one ScriptManager per page. To incorporate controls from the Ajax Control Toolkit
you should use the ToolkitScriptManager that comes with the toolkit contorls, rather
than the ScriptManager from the ASP.NET Ajax Extensions. The ToolkitScriptManager

1072 Internet & World Wide Web How to Program

bundles all the scripts associated with ASP. NET Ajax Toolkit controls to optimize the app-
lication’s performance. Drag the ToolkitScriptManager from the Ajax Toolkit tab in the
toolbox to the top of the page—a script manager must appear before any controls that use
the scripts it manages. This generates lines 5-6 and lines 18-20. Lines 5-6 associate the
AjaxControlToolkit assembly with the tag prefix ajax, allowing us to put Ajax Control
Toolkit elements on the page. Lines 18-20 load the ToolkitScriptManager on the page.

hCommon Programming Error 25.1

Putting more than one instance of the ScriptManager control on a Web Form causes the appli-
cation to throw an InvalidOperationException when the page is initialized,

Partial Page Updates Using the UpdatePanel Control

The UpdatePanel control eliminates full-page refreshes by isolaring a section of a page
for a partial-page update. To implement a partial-page update, drag the UpdatePane]
control from the Ajax Extensions tab in the Toolbox to your form. Then, drag into the
UpdatePanel the control to updarte and the control that triggers the update. For this
example, drag the outputlLabel and submitButton elements into the UpdatePanel.
The components that are managed by the UpdatePane? are placed in the ContentTemp-
1ate element (lines 95—101} of the UpdatePanel {lines 94-102). When the user clicks
the Submit button, the UpdatePanel intercepts the request and makes an asynchronous
request to the server instead. Then the response is inserted in the outputLabel element,
and the UpdatePanel reloads the label to display the new text without refreshing the
entire page.

Adding Ajax Functionality to ASP.NET Validation Controls Using Ajax Extenders
Several controls in the Ajax Control Toolkit are extenders—components that enhance
regular ASP.NET controls. Lines 36-37, 5152, 61-63, 78-7% and 88-90 define vali-
datorCalloutExtender controls that display error messages in small yellow callouts next
to the input fields. Line 37 sets the targetControlID property, which indicates the vali-
dator control from which the validatorCalloutExtender should obtain the error mes-
sage to display. The validatorCalloutExtenders display error messages with a nicer look
and feel, so we no longer need the validator controls to display these messages on their
own. For this reason, line 33 sets the Display property of the first validator to None. The
remaining control extenders and validator controls are configured similarly.

Additional ASP.NET Information

The Ajax Control Toolkit contains many other extenders and independent controls. You
can check them out using the sample website included with the toolkit. The live version
of the sample website can be found at www. asp.net/ajax/control-toolkit/1ive/. For
more information on ASP.NET Ajax, check out our ASP.NET Ajax Resource Center at
waw. deitel. com/aspdotnetajax. -

25.8 Web Resources

www . deitel . com/aspdotnet/

The Deitel ASENET Resource Center focuses on the vast amount of free ASENET content avail-
able online, plus some for-sale items. Start your search here for tools, downloads, text and video
tutotials, webcasts, podcasts, wikis, documentation, reference manuals, conferences, FAQs,

ASP.NET 2.0 and ASP.NET Ajax 1073

books, e-books, sample chapters, articles, newsgroups, forums, downloads from CNET’s down-
load.com, jobs and contract epportunities, and more that will help you develop ASPNET-based
applications. Keep rrack of ASENET blogs for the latest news and developments, or sign up for

RSS feeds to be notifted promptly of cach new development. Also, download free open-source
ASPNET projects.

ate web éontent for wzb—bmwscr cimnts Thlswcb zoazem indwdesi‘
g images and bma:y da:a :

. Class?agﬂdcﬁnwamdmiwcb »Pmﬂmgmnmandob;eas fnrc,x‘;(
i basedapplman&AHwebpagssd;irecdyo:md;mdy lnhefltﬁ'mndasspm o
: . Clas Cuntro? is the base clasthupmvxdessmnﬂmn funcuomktyfataﬂwehmm

; :~’° Merimd Page..:tmt hmdhséw Inftevent, which indicates thata pagnmmmi%&mé sy
L exeeute appli&ﬁon-spuiﬁc mizlahzauon code X

AST4 ntesmer & World Wide Web How to Program

’”‘*ﬂm'mbinedpm&mmdcmxdassﬁm.mpm&cwﬁn
,.ﬁmmthcm'?m:hnasmx zhedietm S

. A.Dmlpnomi.ws.tcommi pmﬂdes.almt ofnpmoasmthxuser Eachmem B
defined by a ListItem element. - L
* Visual Web Dcw!opcrdmpkyssmmzagmusﬁnmmyﬁﬂ?ﬂﬁfwmk
orming common tasks. Asmmtagmaenumapcmdbyd&chngtkcmﬁ
in the upper- nghtcomcrafﬁtccanwolmbadmmedc.

* A #ypertink control adds a hypertink to'a web-page. Tlm!iawgm _fmpmy
spmﬁadmrcmmmtwmqwmdwhcnammmcbypeﬂi‘uk

* A RadioButtoniist control provides a series of radio’ butttmsfofﬂle user:

_'Secmn2532mtmr&nml . T
o ASP.NET provides dacAdﬂotatwwbcmtm!fard@kymgadmm {af
*ages). Using dara from an XML file, the AdRotator: conrol ran elects:
md.waahypcmakwdwmbmmaxeém&uw

‘¢ :mamer&WoﬂdweWebHoww Program

: 25.4 Sfman I mckug B o
Persona{azmen makes it poss;blc for c—busmcsScs te communlcate
:ea's;nﬂ also mpmves users’ abjhty to locate desired products md

iexperxm dl&iculzy usmg weB_appi tion
m;ammn statc mformanon, unlcss _

o pmwdes mcm& ﬂcxxbihty mhaiﬁﬁmmg chent state

. Propcrty Sesmonm contams’ he ur 0. e a:clich
server, 2 unique session 1D is creared for that client. When the client makes;ﬁdﬁbmt
"~ the chenrs sessnon IDis compamd with the session IDs smred ine dw wb seever's memo

bcinactwcbefnmitlsdiscardnd__-- .
s Property Count. provides the nummber of sesiion rtems conmme& ing Session ob;c(:t
* Indexing the Session object wi:h a lmy name resrieyes the co:mpondmg value
+ DProperty Keys of class’ HttpSeSS't onState rcmms a mﬂectmcanmnmgali tbc‘sesmﬁ“’ !neys:

Sectmn 25.5 Case Smafy Comwetmg foa Databa.w in A&RNET ’’’’
* AGridvien AS? NET dﬂm wntrei d:splays datz on'z W‘e’o Fom ina t,abuiar fmmat

Section 25.5.1 Bmldmga Web Farm natmylﬂys Emﬁmnaﬂatam
s AGridview's colors.can be set using the Auto Format... linkin'the GiridViow Tagks smart g m

. A SQL Server 2005 Express database md by an) ASP NE‘? wtbme m;d “be locaned
: pm;ocr s App.Data. folder B : i
A Sqiﬂata&awce contral aliows a web’ apphcmmn to mtera:x wzrh 4 dambase"‘

. thn a ScﬁDataSource is conﬁgured to paform’“l £RT SQL apcrati“

Section 25,6.1 Examining tbe Cw:pletrd&cum Boaks }Jméwe Applicas

+ Forsms authentication is a techinique that protects a page so that only users kmmm
cat acoess it. Szmhusersarekmwnas;hesmsmmbcx& L

+ ASP.NET login controls heip create secure appixcatmns usmg m&mnﬁm 1
found md'choﬁnsecuonnftImToobox_ L
+ When a user's identity is conﬁrmed the user is saad to havc&aen auzhc@ucawd

* A maser page defines common GUI elements that are mhcmed by m:hpsge in
pages. Just as Visual Basic classes can inheritinstance variables and mahadsfmm iges
content pages: mhcnc eiemmts fmm aaster; pagus—-»-d:us igim@wn asﬂsnzk'_ theria

mwmwhomwhéaw;
et usawnﬂm&mm aspasu h

* ASPNET20and ASPNET Ajax 1679

CodeFﬂe atmbute iha Pige &ti'ectivc
- ConectionString pmpertyofaSq?ﬁata*Source
“_Content ASPNET cotitrof - -

7 content page in ASENET © 7~

4

L ‘mm}PmerﬁPNﬁT dcment C T i mage ASPNET web- contrel =

mn | mmg.wmmwmwwﬁowwpmgmm

. Cnntentﬂaceﬂelder ASI’NETcontml : _. : lqrpenext e . A
CCentrolclass . o0 o . “1D attribute ofan ASPNET web cmm‘oi ST
- comroller logic - PR fisIES{Intémcr!afomﬂmSmaa} Chnd

Iugeuﬂekmm!mmmtmr LR e T L

S advestisementfile o L Lo T

; ,': Imgeur'l pmpmyqfan Image weboon mi;
xmmssinﬂs dcmmt in an‘hdaetator

- mfcnnatxonuer L R
Thnerits attribure of ari ASI’NET pagt
' 3-ImtcvaentofanASPNETWehpag PP
_:rmrtﬁsmmd pmpmy of e %?B&tﬁeurcﬁ

- -ASP.NET20and ASP.NET Ajax 1081

. Targex property of a HyperLink control -

- “TextBox ASENET web cositrol :
E f'_mmamulmerapplmm TR S
- Fimeout property of class. HttpSéssimStxtt L
CTie property of a Page direceive . Rt
S Tt property of a2 Web Form

S titte: XH.TML clcmcm e
: :wp “ther * NS
 “ustiie session ID ofan ASPNET cfimt
" Untoad event of an ASPNET page .
T updatec:mund propcny af 4 Sqﬁ)ataSaurr_e .
- wbéatm comml _ S
'al-idaﬁonixpression pmpetty of a
S kagu!arﬁxpression\fahdamrmrd
© Value: pmpmyofchssﬁupﬁm#z
- View. mm omnmnd in vmiwcb

: ;;Paggchs& L
Pagadxmwc mASPNET i
P&m_initevtsithandlﬂ

e g ﬁmm&mvﬁi&mmﬂudmbcphwdonachme \ N
S Ifmuphmonémismfcueookic, :ha:cookmw:libcdmtmyedatdmmdu&hc A

1002 inemet & Warkd Wide Web How to Program '_

¢} A LoginStatus contro} displays the curren: authcnucated ser name ona ch Fbtm. -
f) ASP.NET directives are ‘delimited-by @ and %> .) : ’
g} An AdRotator: control always displays all ads with equal &equcm:y

h) Each web conerol maps to exacely one corresponding XHTML akmem.

i) A SqlDataSource control aibwsa web apphcatlcn to mtmm;h a:databm

25.2 Filtin the blanks in eachi Df l;hc foﬂomng statcmicnts:

DA T T EL T e

a) Web applications conrain threg basic dets:’ .=, . .. o and v

b) A control which ensures that the da.m in anmher c:ontml isin tiw correct farmat amlied
aln) . L Emerien

¢ Aln).._._.._. . occurs when 2 pa.ge requests ﬂ:self P

d) Every ASP.NET page mhcms E‘amciass e ' e

e} Whena page loads, the’ _ event ocouts ﬁrst, foﬂowed by_the o event

f) Tiae file congalins thc funmonahty for an_ASP NET page

user account,
W Adnyo oo
2ok, i
) In a mulntlet apphcatlon, rhc

these drop-down lists so that a postback s _ _ _
page reloads, it should- zeﬂect thc specxﬁ‘cd chﬂngcs to the propcmcs of thc Label dlspfaymg thc- '

time.

25.4 (webcontrols Mod; ﬁmmw) Provmie dm feiimmng functtomi;ty for the example 1 SR

Section 25.3.1: When users click Register; store their: mfoimarion iy the Usars able of the Reg-
istration.mdf database (provided in the chapter s examplcs aduccmry} On posd)ack, thask the
user for providing the information. ; 5

25.5 Modify the WebTime example to a,synchronously updatc thc label everysecond To do so;
use the UpdatePanel and Timer ASE NET. A}ax controls The. Tiger conerol refteshes:thelipdate
panel each time its Tick even occurs. The interval property of théT'mer ccntmldﬁrermmeshow. :
often the UpdatePanel should be refreshed. -

